29 research outputs found

    Nanocomposites based on conducting polymers and carbon nanotubes. From fancy materials to functional applications

    Get PDF
    This review deals with recent progress on the development of nanocomposite materials formed by conducting organic polymers (COPs) and carbon nanotubes (CNs), both from a fundamental and applied point of view. The combination of the unique properties of CNs with COPs makes of these materials interesting multifunctional systems with great potential in many applications such as supercapacitors, sensors, photovoltaic cells and photodiodes, optical limiting devices, solar cells, high-resolution printable conductor, electromagnetic absorbers, and, last but not least, advanced transistorsA post-doctoral fellowship to AMB by the Spanish Ministry of Science is gratefully acknowledged. Partial funding from the Spanish Ministry of Science and Technology (grant no.MA T 2002-04529- C03) is also acknowledged.Peer reviewe

    Spectroscopic evidence for the bulk polymerization of N-vinyl carbazole in the presence of single-walled carbon nanotubes

    No full text
    The bulk polymerization reaction of N-vinylcarbazole (VK) at 70 °C in the presence of single-walled carbon nanotubes (SWNTs) leads to a new composite, whose optical properties were studied by photoluminescence (PL), surface enhanced Raman scattering (SERS) and Fourier transform infrared (FTIR) spectroscopies. A dramatic reduction of the poly(N-vinylcarbazole) (PVK) PL efficiency and a change in the vibrational structure of the PL spectrum of this polymer were observed by adding SWNTs to the synthesis mixture. Steric hindrance effects were evidenced both in SERS spectra of the VK when it interacts mechanico-chemically with SWNTs and in FTIR spectra of the un-doped PVK/SWNTs' composites. Cyclic voltammetry was used to demonstrate the doping process of PVK in PVK/SWNTs' composite.A post-doctoral fellowship to MB by the Spanish Ministry of Science is gratefully acknowledged. Partial funding from the Spanish Ministry of Science and Technology (grant no. MAT 2002-04529-C03) is also acknowledged.Peer reviewe

    Surface species of the nematic mixture E7 obtained by electrochemical insertion of Li

    No full text
    We studied here the influence of Li+ ions on the benzene rings of nematic mixture E7, which is electrochemically adsorbed onto gold electrode surface, to highlight the ability of this mixture for the applications in the field of the rechargeable Li+-ion batteries. Raman spectra support the changes observed in electrochemical analyses while contact angle measurements show that wetting properties of E7 layer were modified after deposition of this mixture onto gold support and the doping with Li+ ions

    Anti-Stokes Raman spectroscopy as a method to identify metallic and mixed metallic/semiconducting configurations of multi-walled carbon nanotubes

    No full text
    SERS studies were performed on films of two families of multi-wall carbon nanotubes (MWCNTs) under an excitation light of 514.5 nm and 647.1 nm. These included Aldrich-MWCNTs, which alternate semiconducting and metallic tubes and M-MWCNTs that contain only metallic tubes obtained by water assisted catalytic chemical vapour deposition (CCVD). The two families of MWCNTs reveal similar spectra in the Stokes branch, which feature an increasing Raman intensity when the glass substrate is replaced with an Au or Ag substrate, indicating a (surface enhanced Raman scattering) SERS mechanism. In the anti-Stokes branch, despite an enhancement of approximately 100 times compared to the predictions of the Boltzmann law, only Aldrich-MWCNTs exhibit a Raman spectrum with an intensity that increases as a result of the change in the glass substrate to Au or Ag, a fact that is revealed by the signature of the SERS process. The invariance of the Raman intensity in the anti-Stokes branch as a result of the change of the substrate is characteristic of M-MWCNTs and results from a Raman light scattering process that takes place only within the skin depth of the metallic structure

    The Photoluminescence and Vibrational Properties of Black Phosphorous Sheets Chemically/Electrochemically Functionalized in the Presence of Diphenylamine

    No full text
    In this work, new information concerning the optical properties of black phosphorus (BP) sheets chemically/electrochemically functionalized with diphenyl amine (DPA) and its macromolecular compound (poly(diphenylamine) (PDPA)) in the absence/presence of phosphotungstic acid (PTA) is reported. Raman scattering and FTIR spectroscopy studies indicate that the interaction of BP with PTA leads to the elimination of the PxOy layer onto the surface of the BP sheets. In the case of the chemical interaction of BP with DPA, the reaction product corresponds to DPA chemically functionalized BP sheets having an imino-phosphorane (IP) structure. The electrochemical oxidation of BP sheets chemically functionalized with DPA in the presence of PTA leads to an increase in the weight of P-N bonds as a consequence of the generation of PDPA doped with the PTA heteropolyanions, as shown by FTIR spectroscopy and Raman scattering. This process is evidenced by a shift of the Raman line from 362 cm−1 to 378 cm−1, assigned to the A1g mode. This change was explained by taking into account the compression of the layers containing P atoms, which is induced by PDPA macromolecular chains. The decrease in the intensity of the PL spectra of DPA as well as PDPA, in the presence of BP, indicates that BP acts as a PL quenching agent for these compounds. A preferential orientation of the PDPA doped with the PTA heteropolyanions on the surface of BP sheets is highlighted by the variation of the binding angle of the PDPA on the surface of BP sheets from 44.7° to 39.9°

    Anisotropic Photoluminescence of Poly(3-hexyl thiophene) and Their Composites with Single-Walled Carbon Nanotubes Highly Separated in Metallic and Semiconducting Tubes

    No full text
    In this work, the effect of the single-walled carbon nanotubes (SWNTs) as the mixtures of metallic and semiconducting tubes (M + S-SWNTs) as well as highly separated semiconducting (S-SWNTs) and metallic (M-SWNTs) tubes on the photoluminescence (PL) of poly(3-hexyl thiophene) (P3HT) was reported. Two methods were used to prepare such composites, that is, the chemical interaction of the two constituents and the electrochemical polymerization of the 3-hexyl thiophene onto the rough Au supports modified with carbon nanotubes (CNTs). The measurements of the anisotropic PL of these composites have highlighted a significant diminution of the angle of the binding of the P3HT films electrochemical synthetized onto Au electrodes covered with M + S-SWNTs. This change was attributed to metallic tubes, as was demonstrated using the anisotropic PL measurements carried out on the P3HT/M-SWNTs and P3HT/S-SWNTs composites. Small variations in the angle of the binding were reported in the case of the composites prepared by chemical interaction of the two constituents. The proposed mechanism to explain this behavior took into account the functionalization process of CNTs with P3HT. The experimental arguments of the functionalization process of CNTs with P3HT were shown by the UV-VIS-NIR and FTIR spectroscopy as well as surface-enhanced Raman scattering (SERS). A PL quenching process of P3HT induced both in the presence of S-SWNTs and M-SWNTs was reported, too. This process origins in the various de-excitation pathways which can be developed considering the energy levels diagram of the two constituents of each studied composite
    corecore